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Vacuum Polarization Induced by a Uniformly 
Accelerated Charge 

B. L i n e t  I 

Received October 17, 1994 

We consider a point charge fixed in the Rindler coordinates which describe a 
uniformly accelerated frame. We determine an integral expression of the induced 
charge density due to the vacuum polarization at the first order in the fine structure 
constant. In the case where the acceleration is weak, we give explicitly the induced 
electrostatic potential. 

1. INTRODUCTION 

There has been much interest for a long time in the study of classical 
and quantum problems in a uniformly accelerated frame. For example, quan- 
tum field theory in such a frame yields the Unruh effect. The present paper 
is concemed with the vacuum polarization due to a charge fixed in a uniformly 
accelerated frame. So far as we know, the induced vector potential has not 
been determined in this case. 

When the pair creation is neglected, the induced current (jw) resulting 
from the vacuum polarization in an external current j~ was determined by 
Serber (1935) at the first order in the fine structure constant a, making 
use of the Fourier transform. Schwinger (1949) gave an equivalent integral 
expression__with the aid of the half-sum of advanced and retarded Green 
functions A(x, x'). However, the direct application of these formulas to the 
case of the current of a uniformly accelerated charge seems too difficult. 

It is of course natural to analyze this problem in a uniformly accelerated 
frame described by the Rindler coordinates in which the charge appears as 
fixed. In consequence, one should infer that there exists only an induced 
charge density in this frame resulting from the vacuum polarization. Unfortu- 
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nately, the above formulas cannot be covariantly written down. However, the 
Schwinger formula giving the induced current can be developed in power 
series in 1/m 2, m being the mass of the electron (h = c = 1), and this series 
may be rewritten in a manifestly covariant manner. As a consequence of this, 
we will derive an integral expression for the induced charge density with the 
aid of the Green function for a certain operator expressed in the Rindler 
coordinates. 

The plan of the work is as follows. In Section 2, we recall the basic 
results of the vacuum polarization in the first order in ~. Then we obtain in 
Section 3 the covariant expression of the induced current in the form of a 
power series in 1/m 2. We specialize this result for the case of the Rindler 
coordinates in Section 4. In Section 5, from this we deduce an integral 
expression of the induced electrostatic potential for a fixed point charge. In 
Section 6 we add some concluding remarks. 

2. S C H W I N G E R ' S  F O R M U L A  

In inertial coordinates (x ~ x i) the Minkowskian metric has the expression 

ds  2 = - ( d x ~  z + (dxl) 2 + (dx2) 2 -k- (dx3) 2 (1) 

The Maxwell equations for the vector potential A,  are 

rqA~ = j~ with O~A ~ = 0 (2) 

where j r  is the current which is conserved. We now introduce the half-sum 
of advanced and retarded Green functions A(x, x ')  for the equation 

(I-q x -- m2)S = --~(4)(x, x ' )  (3) 

It has the explicit expression 

-- 8(h___)) m 2 (Jl(mhl/2)/mk 112 for h > 0  
A(x, x ' )  = 47r 87 for k < 0 (4) 

M 

where X = (x ~ - x'~ - (x I - x' l)  2 - (x 2 - x'2) 2 - (x 3 - x'3) 2, Jn being 

the Bessel functions. 
Schwinger (1949) showed that the induced current (j~) due to the 

vacuum polarization in an external current j ~ can be calculated by an integral 
containing A(x, x'); he found 

f I0 [ (j~(x)) - 4OL, rr dx '~  dv --~ (1 -- V2)1/2 (X -- X') 

1 - v2/3 
• (1 V2)2 V21"]x,jl, z(X ') (5) 
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The induced vector potential {Ar is then determined from Maxwell's equa- 
tions (2) with current (5); we have immediately 

f fl ] (Ar - 4~x71. d x ' ~  dv ~ ( l  _ v2)1/2 (x - x ' )  

1 - v2/3 
• (1 v Z ) 2  v2jr ') (6) 

In the case of a point charge at rest in inertial coordinates, the nonvan- 
ishing component of the external current j~' is the charge density j0, 

j~ = e~(xl)~(x2)~(x3) (7) 

where e is the charge. The corresponding electrostatic potential A0 is 

Ao(xi )_  e 
4-rrr (8) 

where r = [ ( x l )  2 q- (x2)  2 --[- (x3)2] 1/2. With a static external source, one can 
perform the integration with respect to the variable x '~ in Schwinger's formula 
(5). So, the useful quantity is now the Green function for the operator A -- 
m 2. Finally formula (6), giving the induced electrostatic potential (,40) for 
current (7), reduces to 

e~ [ 
- 41rr 7r dv exp (1 - 72)1/21 1 - -  Y 2 (9) 

This modification of the Coulomb law has a range 1/2m. The determination 
of (Ao) has been done by Uehling (1935), but we give the expression in 
closed form found by Pauli and Rose (1936). We set 

(Ao(r)) = ~ U(mr) 
47rr 

(lO) 

where the function U can be expressed in terms of  elementary functions 

U(z) = ~  2 + 1 K 0 ( 2 z ) - ~ ( 2 z  2+5)K1(2z)  

+ z~--f- + 3 Kil(2z) (11) 
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Kn are the modified Bessel functions of the second kind and Kin the repeated 
integrals of K0. From expression (11) we obtain easily the asymptotic form 
of U for small values of z 

g(z )  ~ --~--~ "y + -~ + In z (12) 

where ~ is Euler's constant. 
In the case of a point charge which is uniformly accelerated with an 

acceleration g, the external current j ~ has the components 

j O ( x )  = e ~ { x  1 - -  [1/g 2 + ( x ~  3) 

X 0 
j l ( x )  = e [l/g 2 + (xO)ZlU2 ~{x I - [1/g 2 + (x~ 

j2(x) = j3(x) = 0 (13) 

The application of Schwinger's formula (5) for the current (13) is possible 
in principle, but the actual calculations are too complicated. 

3. COVARIANT FORMULA IN POWER SERIES IN l l m  2 

Schwinger's formula (5) can be developed in power series in 1/m 2. 
According to equation (3), we have the relation 

2 x ~(4)(x) A [ ( I -  v2) 1/2 ] - (1 - vz)z16m 2 

+ 4 - ~  n ~  (1 - v2) 1/2x (14) 

By inserting (14) into (5) and by performing an integration by parts, we obtain 

( j~(x) )  - 4wm2 dv  1 - -~  v 2 n j~(x)  

ff [] a dx'~ ' ldx'2dx'3 dv  A 2 
-rrm 2 (1 - v2) ~/2 (x - x') 

1 - v2]3 
• 1 -- -~  v2D2'Jv'(x') (15) 

The term proportional to nj~ in (15) is the first term of the power series in 
1/m 2. By inserting again relation (14) into the second term in (15), we will 
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obtain the second term of the power series in l[m 2, and so on. Hence the 
current of polarization has the expression 

(jr(x)) = an - ~  Dnj~(x) (16) 
n = l  

where all the coefficients an can be calculated. In particular we have 

a l  - -  1 5 ~ r m 2  (17) 

Each term of the series (16) is a 1-form that we may covariantly write 
down. We now consider an arbitrary coordinate system (x ~') of the Minkowski 
spacetime. The components of the Minkowskian metric are denoted gp,~, and 
the covariant derivative V~,. According to (16), the induced current (j~,) can 
be expressed as a function of the external current j~, by the following power 
series in l/m2: 

(j~,(x')) = an - ~  (g~"~'Vo,V,~,j~,) n (18) 
n = l  

where the operators in (18) are defined by the recurrence law 

(gP'~'Vp,V,~,j~,)" = gP"~'Vp,V,~,[(gP"~'Vp,V~,j~,) n-l] (n >- 1) (19) 

To establish this result we have taken into account that the Ricci tensor 
vanishes. 

The induced vector potential (A~,) satisfies the covariant Maxwell 
equations 

g~'"~'V~,,V,~,A~, = j~, with V~,A ~' = 0 (20) 

4. CASE OF THE RINDLER COORDINATES 

The application of Schwinger's formula (5) to the case of a uniformly 
accelerated charge, described by current (13), seems very difficult because 
the problem is time-dependent. But we know that the Rindler coordinates 
(~0, ~l  ~2, ~3) with ~1 > 0 describe a uniformly accelerated frame in the 
Minkowski spacetime. For an acceleration g, the coordinate transform from 
inertial coordinates is 

x 0 = ~1 sinh(g~O) 

x I = ~1 cosh(g~0) 

X 2 ~__- 6 2 

x 3 : ~3 (21) 
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In this coordinate system, Minkowskian metric (1) takes the form 

ds 2 -- -g2(~l)2(d~~ + (d~l) 2 + (d~2) 2 + (d~3) 2 (22) 

The charge having an acceleration g now will be located at the point 

1 ~n = _  ~ 2 = ~ 3  = 0 (23)  
g 

and its current (13) has the following components: 

j~o = eS( ~, __ ~)~(~2)~(~3) 

j~l = 0 

j ~2 = j~3 = 0 (24) 

in the Rindler coordinates. Consequently, the uniformly accelerated charge 
is described by a point charge at rest�9 

Maxwell 's equations (20) written in the Rindler coordinates for a static 
�9 . 0 �9 , �9 charge density j ~ reduce to an equatxon for the electrostatic potenttal Ar 

( A~ ~l 0~l ~ = j~o (25) 

where je0 = _(g~l)2j~0. For a point charge at rest, je0 being given by (24), 
the electrostatic potential Vw was found by Whittaker (1927), in a slightly 
different coordinate system, which corresponds to the retarded solution to 
the Maxwell equations with current (13). 

In Rindler coordinates, we remark that the operator gP'WpV~j~ applied 
to a static charge density je0 is simple since we have 

(gPCr~TpVcrj~l) = (gP~rVpVcrj~2) = (gP'rVOV~rj~3) = 0 (26) 

As a consequence of properties (26), expression (18) of the induced current 
yields only a charge density ( j ) .  This fact is natural smce now we have a 
problem which does not depend on the time. By defining the operator 

1 0 
~ = A ~  61 0 ~  l (27) 

we can rewrite the induced charge density as a power series in l[m 2, 
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(J~o) = n=l ~ an ~ ~j~o (28) = 

where jr is the external charge density. Maxwell's equations (25) are also 
rewritten in the form 

~(Ar = {j~o) (29) 

In the Rindler coordinates, the first correction to the Whittaker potential 
which is necessary to evaluate the Lamb shift is 

(A~o(~i)) = e ~ g ~ - g(~2)8(~3) (30) 

since al has value (17). 

5. VACUUM POLARIZATION FOR A CHARGE FIXED IN THE 
RINDLER COORDINATES 

We now define the Green function c4~(~ i, ~'i) for the equation 

(31) 

assuming that ~(~i, ~,i) vanishes when the points ~" and ~,i are infinitely 
separated. Now the operator 1 / ~  is self-adjoint, and therefore the Green 
function is symmetric and satisfies the identities 

~ ( ~ e ,  ~'~) = ~'~(~", U) 
1 

f d~ld~2d~;3f(~i) -( ~g(~i) = f d~ld~2d~3g(~i) ~ J ( ~  i) (32) 

where f and g are two arbitrary functions. 
For a static charge density j~0 we are now in a position to give the 

formula giving the induced charge density (j~o) under an integral form: 

(J~~ = --~"lt f d~' ld~'Zd~'3 

• 2 1 (Iv (~ (1 --V2) 1/2 ~`' (1 --V2) 1/2 ~,i 

1 - v2/3 v2 1 ~ o ' • t,j~ (~) (33) 
1 - v z 
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In order to prove this, we develop formula (33) in a power series in l lm z. 
We proceed as in Section 3. From (31) we have the relation 

[ 2 2  ] 
q~ (1 --  1)2) 1/2 ~t, (1 __-~)2)1/2 ~ ' i  

1 - -  1~ 2 
- 4m ~ g{~8<3)({ i - {,~) 

+ l - - v 2  [ 2 ' 2 ] 
4m 2 ~ (1 --v2) 1/2 ~'' (1 -- v2) 1/2 ~,i (34) 

taking into account the specific property of the operator ~t .  By inserting 
(34) into (33) and making use of the identities (32), we find (v2) 

{j~o(~i)} - 4,rrm2 dv 1 - ~ v 2 ~j~o(lr 

a [ d~,ld~,2d~,3 
4,rrm 2 

f i [  . 2  ] 
• dv ~ (1 - •2)1/2 ~t, (1 - y2)1/2 ~,i 

(v2) 12o,,  x 1 - -2 v2 g-~ %j~ (6 )  (35) 

We recognize that the coefficient in front of ~ j~0  is a~. The repeated applica- 
tions of relation (34) yield the power series (28). Therefore, we conclude that 
formula (33) gives the induced charge density due to the vacuum polarization. 
However, we are not worried about the boundary conditions of the Green 
function ~(~i, ~,i) at the hypersurface ~l = 0 in the metric (22). 

We obtain the induced electrostatic potential from Maxwell's equations 
(29) by using again (32), 

<ac(~i)) = __a f a~'~a~'2W 3 
'/1" J 

f o [  2 ] X dv N (1 --v2) 1/2 ~i, (1 - v2) la ~,i 

- 1 , i  1 ~/3 v~_~j~o(~ 
• l _ v  2 

) (36) 

In the case of charge density (24), the integral (36) reduces to 
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 aoo,   e lo = - -  d v  ~ _-v2)~12 6', v2)1/2 6i~ v 2 'rr (1 (1 - 1 - 

w h e r e  6~ = (1/g, 0, 0). By the inverse transform of coordinates (21) we can 
express the induced vector potential (A,) in inertial coordinates. 

The problem is now to determine the Green function ~(6;, ~,i). We 
restrict ourselves to finding an expression at the first order in g. To do this, 
we introduce the new coordinates 

y l = 61 _ _1, y2 __- 62, y3 .= 63 (38) 
g 

With variables (38), equation (31) takes the form 

my 1 + gyl Oyl m2 ~ = - - (1  + gyl)~(3)(yi  _ y,i) (39) 

and, by keeping the terms linear in g, this becomes 

( o ) - - -  - m 2 ~ = - ( 1  + gyl)B(3~(yi - y'i) (40) Ay g Oy 1 

The domain of validity of equation (40) is restricted to gy i < < i. We choose 
the solution of this equation which reduces to the Green function for the 
operator A - m 2 in the limit where g tends to 0. We do not touch upon the 
problem of the global definition of the Green function N(6 i, 6's). We find 

exp - mlyi - y'il ( 1  -4-~[Y--7~- Y'--iT 1 ) ~3(y~, y '~) = 1 + -~ gy'  + _~ gy,1 + O(g2) (41) 

We are now in a position to calculate formula (37) at the first order in 
g. We have to perform 6 "~ 2/(1 - v2)~/26, which we write in the coordinates yi, 

1 1 2 +gy~ +gy'~ 
1 + ~ g y l  +_~gy, l...~ (1 - -V2)  1/2 

So, we obtain 

e o~ ;0 [ 11 v2,3 ( 1 ) ~" dv exp _ v2)1/2 J _ v2 v 2 1 --I- (42) (A~~ 4"rr~ w (1 1 2 gyl 

where e = [(yl)2 + (yZ)2 + (y3)2] | /2.  According to expression (9) of the 
Uehling potential (Ao), we can write 

l (a~o(yi)) ~ (ao(yi)} + ~ g(ao(yi))y 1 (43) 
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At the first order in g, the metric (22) takes the form 

ds 2 ~ - (1  + 2gyl)(dy~ 2 + (@1)2 + (@2)2 + (@3)2 (44) 

which is valid for gy ~ < <  1. The Whittaker potential is then approximated by 

e ( 1 ) 
Vw(y i) ~ ~ 1 q- ~ gyl (45) 

The total electrostatic potential V, the sum of (43) and (45), generated by a 
point charge located at yi = 0 in the metric (44), taking into account the 
vacuum polarization at the first order in oL, is given by the expression 

V(y i) ~ ~ 1 + U(m~) + ~ gyl -t- ~ gU(m~)y ~ (46) 

where U is given by (11). 

6. CONCLUSION 

We have given an integral expression (37) for the induced electrostatic 
potential with the aid of the Green function for the operator (31) in the Rindler 
coordinates. This determination is obtained from the Schwinger formula in 
inertial coordinates. However, it would be of conceptual interest to derive 
directly this formula within the framework of quantum electrodynamics in 
Rindler spacetime in order to discuss the effect of the horizon. 
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